Initialization Methods for System Identification

نویسنده

  • Christian Lyzell
چکیده

In the system identification community a popular framework for the problem of estimating a parametrized model structure given a sequence of input and output pairs is given by the prediction-error method. This method tries to find the parameters which maximize the prediction capability of the corresponding model via the minimization of some chosen cost function that depends on the prediction error. This optimization problem is often quite complex with several local minima and is commonly solved using a local search algorithm. Thus, it is important to find a good initial estimate for the local search algorithm. This is the main topic of this thesis. The first problem considered is the regressor selection problem for estimating the order of dynamical systems. The general problem formulation is difficult to solve and the worst case complexity equals the complexity of the exhaustive search of all possible combinations of regressors. To circumvent this complexity, we propose a relaxation of the general formulation as an extension of the nonnegative garrote regularization method. The proposed method provides means to order the regressors via their time lag and a novel algorithmic approach for the ARX and LPV-ARX case is given. Thereafter, the initialization of linear time-invariant polynomial models is considered. Usually, this problem is solved via some multi-step instrumental variables method. For the estimation of state-space models, which are closely related to the polynomial models via canonical forms, the state of the art estimation method is given by the subspace identification method. It turns out that this method can be easily extended to handle the estimation of polynomial models. The modifications are minor and only involve some intermediate calculations where already available tools can be used. Furthermore, with the proposed method other a priori information about the structure can be readily handled, including a certain class of linear gray-box structures. The proposed extension is not restricted to the discrete-time case and can be used to estimate continuous-time models. The final topic in this thesis is the initialization of discrete-time systems containing polynomial nonlinearities. In the continuous-time case, the tools of differential algebra, especially Ritt’s algorithm, have been used to prove that such a model structure is globally identifiable if and only if it can be written as a linear regression model. In particular, this implies that once Ritt’s algorithm has been used to rewrite the nonlinear model structure into a linear regression model, the parameter estimation problem becomes trivial. Motivated by the above and the fact that most system identification problems involve sampled data, a version of Ritt’s algorithm for the discrete-time case is provided. This algorithm is closely related to the continuous-time version and enables the handling of noise signals without differentiations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of the Silverbox Benchmark Using Nonlinear State-Space Models

This work presents the application of an initialization scheme for nonlinear statespace models on a real data benchmark example: the Silverbox problem. The goal of the proposed approach is to transform the identification of a nonlinear dynamic system into an approximate static problem, so that system dynamics and nonlinear terms are identified separately. Classic identification techniques are u...

متن کامل

Incorporating Prior Knowledge in Fuzzy -Regression Models – Application to System Identification

The identification of fuzzy c-regression models (FCRM) suffers from several problems characteristic of all calculusbased optimization methods, including good initialization, avoiding local minima and determining the number of clusters. This paper presents a grey-box approach that can solve the above-mentioned problems with the use of prior knowledge based constrained prototypes. The proposed ap...

متن کامل

System Identification Using Dynamic Neural Networks: Training and Initialization Aspects

This paper explores training and initialization aspects of dynamic neural networks when applied to the nonlinear system identification problem. A well known dynamic neural network structure contains both output states and hidden states. Output states are related to the outputs of the system represented by the network. Hidden states are particularly important in allowing dynamic neural networks ...

متن کامل

Model Identification in Wavelet Neural Networks Framework

— The scope of this study is to present a complete statistical framework for model identification of wavelet neural networks (WN). In each step in WN construction we test various methods already proposed in literature. In the first part we compare four different methods for the initialization and construction of the WN. Next various information criteria as well as sampling techniques proposed i...

متن کامل

Solving the Parameter Identification Problem using Shuffled Frog Leaping with Opposition-Based Initialization

The parameter identification problem can be modeled as a non-linear optimization problem. In this problem, some unknown parameters of a mathematical model presented by an ordinary differential equation using some experimental data must be estimated. This paper presents a shuffled frog leaping algorithm for solving parameter identification problem. An opposition-based initialization strategy is ...

متن کامل

Recursive Black-box Identification of Nonlinear State-space ODE Models

Nonlinear system identification methods is a topic that has been gaining interest over the last years. One reason is the many application areas in controller design and system development. However, the problem of modeling nonlinear systems is complex and finding a general method that can be used for many different applications is difficult. This thesis treats recursive identification methods fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009